已知f(x)是定义在R上的奇函数,当x≥0时,f 难度:简单 题型:单选题 来源:不详 2023-10-06 22:00:02 题目 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是( ) A.(-∞,-1)∪(2,+∞) B.(-2,1) C.(-1,2) D.(-∞,-2)∪(1,+∞) 答案 ∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上单调递增又∵f(x)是定义在R上的奇函数根据奇函数的对称区间上的单调性可知,f(x)在(-∞,0)上单调递增∴f(x)在R上单调递增∵f(2-a2)>f(a)∴2-a2>a解不等式可得,-2<a<1故选B 解析