已知定义域为x∈R|x≠0的函数f(x)满足;①

难度:一般 题型:解答题 来源:不详

题目

已知定义域为x∈R|x≠0的函数f(x)满足;
①对于f(x)定义域内的任意实数x,都有f(-x)+f(x)=0;
②当x>0时,f(x)=x2-2.
(I)求f(x)定义域上的解析式;
(II)解不等式:f(x)<x.

答案

(I)∵对于f(x)定义域内的任意实数x,都有f(-x)+f(x)=0,
∴f(-x)=-f(x),
故f(x)在其定义域为{x∈R|x≠0}内是奇函数(2分)
∵当x>0时,f(x)=x2-2,
设x<0,所以-x>0,
∴f(-x)=-f(x)=x2-2,即f(x)=2-x2
f(x)=

解析