已知f(x)是R上的奇函数,且当x∈(-∞,0)

难度:一般 题型:解答题 来源:不详

题目

已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-x2-4x-3,
(1)当x∈(0,+∞)时,f(x)的解析式;
(2)求函数f(x)的零点.

答案

(1)当x∈(0,+∞)时,-x∈(-∞,0)
则f(-x)=-(-x)2-4(-x)-3=-x2+4x-3
∵f(x)是R的奇函数∴f(-x)=-f(x)
∴当x∈(0,+∞)时,f(x)=-f(-x)=-[-x2+4x-3]=x2-4x+3
(2)∵f(x)是R的奇函数∴f(0)=0
f(x)=

解析