已知函数f(x)=x3-3|x-a|+λ•sin

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=x3-3|x-a|+λ•sin(π•x),其中a,λ∈R;
(1)当a=0时,求f(1)的值并判断函数f(x)的奇偶性;
(2)当a=0时,若函数y=f(x)的图象在x=1处的切线经过坐标原点,求λ的值;
(3)当λ=0时,求函数f(x)在[0,2]上的最小值.

答案

(1)a=0时f(x)=x3-3|x|+λ•sin(π•x)
f(-1)=-4,f(1)=-2,
所以f(-1)≠f(1),f(-1)≠-f(1),
所以f(x)时非奇非偶函数
(2)x>0时,f(x)=x3-3x+λsin(πx),所以f"(x)=3x2-3+λπcos(πx)
所以在x=1处的切线方程为y+2=-λπ(x-1)
因为过原点,所以λ=

2
π

(3)当a≤0时,x∈[0,2]上f(x)=x3-3x+3a,f"(x)=3x2-3,
所以f(x)在[0,1]内单调递减,[1,2]递增,所以ymin=f(1)=3a-2
当a≥2时,x∈[0,2]上f(x)=x3+3x-3a,f"(x)=3x2+3>0,
所以f(x)单调递增,ymin=f(0)=-3a
当0<a<2时,f(x)=

解析