已知函数f(x)=(m-2)x2+(m2-4)x

难度:简单 题型:单选题 来源:不详

题目

已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于(  )

A.2 B.-2 C.±2 D.0

答案

∵函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,
∴m2-4=0,故m=±2,①
又∵函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,
∴g′(x)=-3x2+4x+m≤0在R上恒成立,故△≤0,即16+12m≤0,即m≤-

4
3

由①②得m=-2,
故选B.

解析

闽ICP备2021017268号-8