题目
4 |
2ax+a |
(1)求a的值;
(2)当x∈(0,1]时,t•f(x)≥2x-2恒成立,求实数t的取值范围.
答案
4 |
2ax+a |
∴f(0)=1-
4 |
2+a |
(2)由(1)得f(x)=
2x-1 |
2x+1 |
∴当0<x≤1时,t•f(x)≥2x-2恒成立,
则等价于t≥
2x-2 |
f(x) |
(2x-2)(2x+1) |
2x-1 |
令m=2x-1,0<m≤1,即t≥m-
1 |
m |
既t≥y=m-
1 |
m |
1 |
m |
∴当m=1时y=m-
1 |
m |
故所求的t范围是:t≥1.
4 |
2ax+a |
4 |
2ax+a |
4 |
2+a |
2x-1 |
2x+1 |
2x-2 |
f(x) |
(2x-2)(2x+1) |
2x-1 |
1 |
m |
1 |
m |
1 |
m |
1 |
m |