题目
| 4 |
| 2ax+a |
(1)求a的值;
(2)当x∈(0,1]时,t•f(x)≥2x-2恒成立,求实数t的取值范围.
答案
| 4 |
| 2ax+a |
∴f(0)=1-
| 4 |
| 2+a |
(2)由(1)得f(x)=
| 2x-1 |
| 2x+1 |
∴当0<x≤1时,t•f(x)≥2x-2恒成立,
则等价于t≥
| 2x-2 |
| f(x) |
| (2x-2)(2x+1) |
| 2x-1 |
令m=2x-1,0<m≤1,即t≥m-
| 1 |
| m |
既t≥y=m-
| 1 |
| m |
| 1 |
| m |
∴当m=1时y=m-
| 1 |
| m |
故所求的t范围是:t≥1.
| 4 |
| 2ax+a |
| 4 |
| 2ax+a |
| 4 |
| 2+a |
| 2x-1 |
| 2x+1 |
| 2x-2 |
| f(x) |
| (2x-2)(2x+1) |
| 2x-1 |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |
| 1 |
| m |