设函数f(x)=loga(x-3a)(a>0,且

难度:一般 题型:解答题 来源:不详

题目

设函数f(x)=loga(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的解析式;
(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围;
(3)把y=g(x)的图象向左平移a个单位得到y=h(x)的图象,函数F(x)=2a1-h(x)-a2-2h(x)+a-h(x),(a>0,且a≠1)在[

1
4
,4]的最大值为
5
4
,求a的值.

答案

(本小题满分12分)
(1)设点Q的坐标为(x",y"),则x"=x-2a,y"=-y,即x=x"+2a,y=-y".
∵点P(x,y)在函数y=loga(x-3a)图象上
∴-y"=loga(x"+2a-3a),即y′=loga

1
x′-a

g(x)=loga
1
x-a

(2)由题意x∈[a+2,a+3],则x-3a=(a+2)-3a=-2a+2>0,
1
x-a
=
1
(a+2)-a
>0

又a>0,且a≠1,∴0<a<1,|f(x)-g(x)|=|loga(x-3a)-loga
1
x-a
|=|loga(x2-4ax+3a2)|

∵|f(x)-g(x)|≤1∴-1≤loga(x2-4ax+3a2)≤1,r(x)=x2-4ax+3a2对称轴为x=2a
∵0<a<1∴a+2>2a,则r(x)=x2-4ax+3a2在[a+2,a+3]上为增函数,
∴函数u(x)=loga(x2-4ax+3a2)在[a+2,a+3]上为减函数,
从而[u(x)]max=u(a+2)=loga(4-4a).
[u(x)]min=u(a+3)=loga(9-6a),
又0<a<1,则

解析