题目
f(m)+f(n) |
m+n |
1 |
2 |
1 |
x-1 |
答案
f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)-f(x2) |
x1-x2 |
由已知得
f(x1)-f(x2) |
x1-x2 |
∵-1≤x1<x2≤1,∴x1-x2<0,可得f(x1)-f(x2)<0
∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数,
因此不等式f(x+
1 |
2 |
1 |
x-1 |
1 |
2 |
1 |
x-1 |
解此不等式,得:-
3 |
2 |
3 |
2 |
f(m)+f(n) |
m+n |
1 |
2 |
1 |
x-1 |
f(x1)-f(x2) |
x1-x2 |
f(x1)-f(x2) |
x1-x2 |
1 |
2 |
1 |
x-1 |
1 |
2 |
1 |
x-1 |
3 |
2 |
3 |
2 |