题目
| f(m)+f(n) |
| m+n |
| 1 |
| 2 |
| 1 |
| x-1 |
答案
f(x1)-f(x2)=f(x1)+f(-x2)=
| f(x1)-f(x2) |
| x1-x2 |
由已知得
| f(x1)-f(x2) |
| x1-x2 |
∵-1≤x1<x2≤1,∴x1-x2<0,可得f(x1)-f(x2)<0
∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数,
因此不等式f(x+
| 1 |
| 2 |
| 1 |
| x-1 |
| 1 |
| 2 |
| 1 |
| x-1 |
解此不等式,得:-
| 3 |
| 2 |
| 3 |
| 2 |
| f(m)+f(n) |
| m+n |
| 1 |
| 2 |
| 1 |
| x-1 |
| f(x1)-f(x2) |
| x1-x2 |
| f(x1)-f(x2) |
| x1-x2 |
| 1 |
| 2 |
| 1 |
| x-1 |
| 1 |
| 2 |
| 1 |
| x-1 |
| 3 |
| 2 |
| 3 |
| 2 |