题目
x+1 |
x-1 |
(Ⅰ)求函数的定义域,并证明f(x)=ln
x+1 |
x-1 |
(Ⅱ)对于x∈[2,6]f(x)=ln
x+1 |
x-1 |
m |
(x-1)(7-x) |
答案
x+1 |
x-1 |
∴函数的定义域为(-∞,-1)∪(1,+∞)
当x∈(-∞,-1)∪(1,+∞)时,
f(-x)=ln
-x+1 |
-x-1 |
x-1 |
x+1 |
x+1 |
x-1 |
x+1 |
x-1 |
∴f(x)=ln
x+1 |
x-1 |
(Ⅱ)由x∈[2,6]时,f(x)=ln
x+1 |
x-1 |
m |
(x-1)(7-x) |
∴
x+1 |
x-1 |
m |
(x-1)(7-x) |
∴0<m<(x+1)(7-x)在x∈[2,6]成立
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函数的性质可知x∈[2,3]时函数单调递增,x∈[3,6]时函数单调递减,
x∈[2,6]时,g(x)min=g(6)=7..
∴0<m<7.