题目
2x |
4x+1 |
(1)求f(x)在[-1,1]上的解析式;
(2)求f(x)在[2k-1,2k+1](k∈Z)上的解析式;
(3)若关于x的方程|f(x)|=a无实数解,求实数a的取值范围.
答案
有f(-x)=
2-x |
4-x+1 |
2x |
4x+1 |
由f(x)为R上的奇函数,得f(-x)=-f(x),
∴当x∈(-1,0)时,f(x)=-f(-x)=-
2x |
4x+1 |
又f(0)=-f(0),f(0)=0,
∵f(-1)=-f(1),f(-1)=f(1-2)=f(1),
∴f(-1)=0,f(1)=0,(7分)
∴f(x)=
解析 |