题目
ex-e-x |
2 |
A.非奇非偶函数,且在(0,+∝)上单调递增 |
B.奇函数,且在R上单调递增 |
C.非奇非偶函数,且在(0,+∝)上单调递减 |
D.偶函数,且在R上单调递减 |
答案
ex-e-x |
2 |
ex-e-x |
2 |
解得x>0,即{x|x>0}不关于原点对称,
因此函数是非奇非偶函数;
根据复合函数的单调性的判定方法,可知:函数f(x)=ln
ex-e-x |
2 |
故选A.
ex-e-x |
2 |
A.非奇非偶函数,且在(0,+∝)上单调递增 |
B.奇函数,且在R上单调递增 |
C.非奇非偶函数,且在(0,+∝)上单调递减 |
D.偶函数,且在R上单调递减 |
ex-e-x |
2 |
ex-e-x |
2 |
ex-e-x |
2 |