题目
| x+1 |
| 3-x |
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)当0<a<1时,解不等式f(x)≥loga2.
答案
∴f(t)=loga
| t+2 |
| 2-t |
∴f(x)=loga
| x+2 |
| 2-x |
(2)由
| x+2 |
| 2-x |
∵f(-x)=loga
| -x+2 |
| 2+x |
| x+2 |
| 2-x |
∴函数是奇函数;
(3)当0<a<1时,不等式f(x)≥loga2等价于0<
| x+2 |
| 2-x |
∴-2<x≤
| 2 |
| 3 |
即不等式f(x)≥loga2的解集为(-2,
| 2 |
| 3 |
| x+1 |
| 3-x |
| t+2 |
| 2-t |
| x+2 |
| 2-x |
| x+2 |
| 2-x |
| -x+2 |
| 2+x |
| x+2 |
| 2-x |
| x+2 |
| 2-x |
| 2 |
| 3 |
| 2 |
| 3 |