设a,b∈R,且a≠2,若定义在区间(-b,b)

难度:一般 题型:填空题 来源:江苏模拟

题目

a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg

1+ax
1+2x
是奇函数,则a+b的取值范围是______.

答案

∵定义在区间(-b,b)内的函数f(x)=lg

1+ax
1+2x
是奇函数,
∴任x∈(-b,b),f(-x)=-f(x),即lg
1-ax
1-2x
=-lg
1+ax
1+2x

lg
1-ax
1-2x
=lg
1+2x
1+ax
,则有
1-ax
1-2x
=
1+2x
1+ax

即1-a2x2=1-4x2,解得a=±2,
又∵a≠2,∴a=-2;则函数f(x)=lg
1-2x
1+2x

要使函数有意义,则
1-2x
1+2x
>0,即(1+2x)(1-2x)>0
解得:-
1
2
<x<
1
2
,即函数f(x)的定义域为:(-
1
2
1
2
),
∴(-b,b)⊆(-
1
2
1
2
),∴0<b≤
1
2

∴-2<a+b≤-
3
2
,即所求的范围是(-2,-
3
2
]

故答案为:(-2,-
3
2
]

解析

闽ICP备2021017268号-8