题目
| 1+x |
| 1-x |
(1)判断函数f(x)的奇偶性;
(2)求证f(x1)+f(x2)=f(
| x1+x2 |
| 1+x1x2 |
(3)若f(
| a+b |
| 1+ab |
| 1 |
| 2 |
答案
| 1+x |
| 1-x |
又f(x)+f(-x)=log2
| 1+x |
| 1-x |
| 1-x |
| 1+x |
所以函数f(x)为奇函数
(2)证明:f(x1)+f(x2)=log2
| 1+x1 |
| 1-x1 |
| 1+x2 |
| 1-x2 |
| 1+x1 |
| 1-x1 |
| 1+x2 |
| 1-x2 |
| 1+x1+x2+x1x2 |
| 1-x1-x2+x1x2 |
| x1+x2 |
| 1+x1x2 |
1+
| ||
1-
|
| 1+x1+x2+x1x2 |
| 1-x1-x2+x1x2 |
∴f(x1)+f(x2)=f(
| x1+x2 |
| 1+x1x2 |
(3)由(2)的结论知f(a)+f(b)=f(
| a+b |
| 1+ab |
又由(1)知f(b)=-f(-b)=-
| 1 |
| 2 |
∴f(a)=1-f(b)=1+
| 1 |
| 2 |
| 3 |
| 2 |