题目
f(x2)-f(x1) |
x2-x1 |
1 |
2 |
A.a<b<c | B.c<b<a | C.b<c<a | D.b<a<c |
答案
f(x2)-f(x1) |
x2-x1 |
∴∴f (x2)-f (x1)>0,即f (x2)>f (x1),
∴函数f(x)在(1,+∞)上为单调增函数,
∵函数f(x+1)是偶函数,
∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称,
∴a=f(-
1 |
2 |
5 |
2 |
∵1<2<
5 |
2 |
5 |
2 |
则b<a<c,
故选D.
f(x2)-f(x1) |
x2-x1 |
1 |
2 |
A.a<b<c | B.c<b<a | C.b<c<a | D.b<a<c |
f(x2)-f(x1) |
x2-x1 |
1 |
2 |
5 |
2 |
5 |
2 |
5 |
2 |