题目
(1)求f(1),f(-1),
(2)判断函数y=f(x)的奇偶性;
(3)若y=f(x),在(0,+∞)上是增函数,且满足y=f(x)+f(x-
1 |
2 |
答案
∴令x=y=1得:f(1)=2f(1),故f(1)=0;
再令x=y=-1得:f(1)=2f(-1)=0,故f(-1)=0;
(2)令y=-1,则f(-x)=f(x)+f(-1)=f(x)
故f(x)是偶函数;
(3)∵f(x)+f(x-
1 |
2 |
1 |
2 |
∴|x(x-
1 |
2 |
∴-1≤x(x-
1 |
2 |
∴
解析 |