题目
f(1) |
f(2) |
f(2) |
f(3) |
f(2006) |
f(2007) |
答案
∴f(n+1)=f(1)f(n)
∴
f(n+1) |
f(n) |
即
f(n) |
f(n+1) |
1 |
2 |
∴则
f(1) |
f(2) |
f(2) |
f(3) |
f(2006) |
f(2007) |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
故答案为:1003
f(1) |
f(2) |
f(2) |
f(3) |
f(2006) |
f(2007) |
f(n+1) |
f(n) |
f(n) |
f(n+1) |
1 |
2 |
f(1) |
f(2) |
f(2) |
f(3) |
f(2006) |
f(2007) |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |