题目
| f(1) |
| f(2) |
| f(2) |
| f(3) |
| f(2006) |
| f(2007) |
答案
∴f(n+1)=f(1)f(n)
∴
| f(n+1) |
| f(n) |
即
| f(n) |
| f(n+1) |
| 1 |
| 2 |
∴则
| f(1) |
| f(2) |
| f(2) |
| f(3) |
| f(2006) |
| f(2007) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:1003
| f(1) |
| f(2) |
| f(2) |
| f(3) |
| f(2006) |
| f(2007) |
| f(n+1) |
| f(n) |
| f(n) |
| f(n+1) |
| 1 |
| 2 |
| f(1) |
| f(2) |
| f(2) |
| f(3) |
| f(2006) |
| f(2007) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |