已知函数f(x)=x3+ax2+3bx+c(b≠

难度:一般 题型:解答题 来源:北京

题目

已知函数f(x)=x3+ax2+3bx+c(b≠0),且g(x)=f(x)-2是奇函数.
(Ⅰ)求a,c的值;
(Ⅱ)求函数f(x)的单调区间.

答案

(Ⅰ)因为函数g(x)=f(x)-2为奇函数,
所以,对任意的x∈R,都有g(-x)=-g(x),即f(-x)-2=-f(x)+2.
又f(x)=x3+ax2+3bx+c
所以-x3+ax2-3bx+c-2=-x3-ax2-3bx-c+2.
所以

解析