题目
| 1 |
| f(x) |
答案
| 1 |
| f(x) |
设x1<x2<0,则-x1>-x2>0,
∴f(-x1)>f(-x2),
∵f(x)为偶函数,
∴f(x1)>f(x2)
又-
| 1 |
| f(x) |
| 1 |
| f(x2) |
| 1 |
| f(x2) |
| 1 |
| f(x1) |
| f(x1)-f(x2) |
| f(x2)f(x1) |
(∵f(x1)<0,f(x2)<0)
∴-
| 1 |
| f(x1) |
| 1 |
| f(x2) |
∴-
| 1 |
| f(x) |
| 1 |
| f(x) |
| 1 |
| f(x) |
| 1 |
| f(x) |
| 1 |
| f(x2) |
| 1 |
| f(x2) |
| 1 |
| f(x1) |
| f(x1)-f(x2) |
| f(x2)f(x1) |
| 1 |
| f(x1) |
| 1 |
| f(x2) |
| 1 |
| f(x) |