函数f(x)=lg(1+x2),g(x)=2-|
难度:一般
题型:填空题
来源:北京
题目
函数f(x)=lg(1+x2),g(x)=2-|x|,h(x)=tan2x中,______是偶函数. |
答案
①若f(x)=lg(1+x2),则函数f(x)的定义域为R,则f(-x)=lg(1+x2)=f(x),所以f(x)是偶函数. ②若g(x)=2-|x|,则函数g(x)的定义域为R,则g(-x)=2-|x|=g(x),所以g(x)是偶函数. ③若h(x)=tan2x,则函数f(x)的定义域为{x|2x≠kπ+,k∈Z}={x|x≠kπ+,k∈Z},则h(-x)=tan(-2x)=-tan2x=-h(x), 所以h(x)是奇函数. 故答案为:f(x),g(x). |
解析