题目
A.(-
|
B.(-1,0) | C.(-
|
D.(-
|
答案

因为关于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4个不同的根,
就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,
f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,
所以可以得到函数f(x)的图象
又因为y=kx+k+1=k(x+1)+1过定点(-1,1),
在同一坐标系内画出它们的图象如图,
由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,
而kAB=-
1 |
3 |
1 |
3 |
故选D.