定义在区间[-23π,π]上的函数y=f(

难度:一般 题型:解答题 来源:不详

题目

定义在区间[-

2
3
π,π]上的函数y=f(x)的图象关于直线x=
π
6
对称,当x∈[-
2
3
π,
π
6
]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其图象如图所示.

(Ⅰ)求函数y=f(x)在[-
2
3
π,π]的表达式;
(Ⅱ)求方程f(x)=

答案

(Ⅰ)x∈[-
3
π
6
],A=2,
T
4
=-
π
6
-(-
3
)
,∴T=2π,ω=1,
且f(x)=2sin(x+φ)过(-
π
6
,2),
∵0<φ<π,∴-
π
6
+
φ=
π
2
,φ=
3

f(x)=2sin(x+
3
),
π
6
≤x≤π
时,-
3
π
3
-x≤
π
6
,f(
π
3
-x)=2sin(
π
3
-x+
3
)=2sin(π-x)=2sinx,
而函数y=f(x)的图象关于直线x=
π
6
对称,则f(x)=f(
π
3
-x),即f(x)=2sinx,
π
6
≤x≤π

∴f(x)=

解析