已知f(x)=sinx+2x,x∈[-π2 难度:一般 题型:填空题 来源:不详 2023-10-02 12:30:06 题目 已知f(x)=sinx+2x,x∈[- π 2 , π 2 ],且f(1+a)+f(2a)<0,则a的取值范围是______. 答案 ∵f(-x)=-sinx-2x=-f(x),∴函数f(x)在其定义域[- π 2 , π 2 ]上是奇函数因此,不等式f(1+a)+f(2a)<0可化成f(1+a)<-f(2a)即f(1+a)>f(-2a),∵函数f(x)=sinx+2x,求导数得f"(x)=cosx+2>0∴函数f(x)在[- π 2 , π 2 ]上是增函数由此可得原不等式等价于 解析 相关题目 已知f(x)=sinx+2x,x∈[-π2 已知定义在R上的奇函数f(x),定义域上 定义在R上的奇函数f(x)一定有( )A.f 已知定义域为R的函数y=f(x-1)是奇函 已知奇函数f(x)在区间(a,b)上是减函数,证 已知y=f(x)是定义在R上的偶函数,且在[ 函数f(x)=2sinπx与函数g(x)=3 下列函数中,既是奇函数又是减函数的 已知函数f(x)=x2x2+1,则f(1 已知实数a>0,函数f(x)=1-x 闽ICP备2021017268号-8