已知函数f(x)=-x3+x2,g(x)=aln

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=

答案

(1)由对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,得(x-lnx)a≤x2-2x,.
由于x∈[1,e],lnx≤1≤x,且等号不能同时取得,所以lnx<x,x-lnx>0.
从而a≤
x2-2x
x-lnx
恒成立,a≤(
x2-2x
x-lnx
min. …(4分)
设t(x)=
x2-2x
x-lnx
,x∈[1,e],
求导,得t′(x)=
(x-1)(x+2-lnx)
(x-lnx)2
.…(6分)
x∈[1,e],x-1≥0,lnx≤1,x+2-lnx>0,
从而t′(x)≥0,t(x)在[1,e]上为增函数.
所以t(x)min=t(1)=-1,所以a≤-1.…(8分)
(2)F(x)=

解析