若关于x的不等式x2+12x-(12

难度:一般 题型:填空题 来源:不详

题目

若关于x的不等式x2+

1
2
x-(
1
2
)n≥0对任意n∈N*在x∈(-∞,λ]上恒成立,则实常数λ的取值范围是______.

答案

当n∈N*时,(

1
2
)n的最大值为
1
2

则关于x的不等式x2+
1
2
x-(
1
2
)n≥0
对任意n∈N*在x∈(-∞,λ]上恒成立,
x2+
1
2
x-
1
2
≥0
在x∈(-∞,λ]上恒成立,
∵f(x)=x2+
1
2
x-
1
2
的图象是开口朝上,且以x=-
1
4
为对称轴的抛物线
则当λ≤-
1
4
时,f(x)=x2+
1
2
x-
1
2
在(-∞,λ]上单调递减,
若f(x)≥0,即f(λ)≥0,解得λ≤-1
当λ>-
1
4
时,f(x)=x2+
1
2
x-
1
2
在(-∞,-
1
4
]上单调递减,[-
1
4
,λ]单调递增
若f(x)≥0,即f(-
1
4
)≥0,此时不满足条件
综上λ≤-1
即常数λ的取值范围是(-∞,-1]

解析

闽ICP备2021017268号-8