已知定义在R上的函数f(x)=Acos(ωx+φ

难度:一般 题型:解答题 来源:不详

题目

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤

π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+
π
3
)
图象所有的对称中心都在y=f(x)图象的对称轴上.
(1)求f(x)的表达式;
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,求cos(x0-
π
3
)
的值;
(3)设

答案

(1)依题意可知:A=2,T=π,y=sin(2x+
π
3
)
与f(x)相差
T
4
+kT,k∈Z
,即相差
π
4
+kπ,k∈Z

所以f(x)=Asin[2(x+
π
4
+kπ)+
π
3
]=Acos(2x+
π
3
)

f(x)=Asin[2(x-
π
4
+kπ)+
π
3
]=Acos(2x+
3
)
(舍),
f(x)=2cos(2x+
π
3
)

(2)因为f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,即cos(x0+
π
3
)=
3
4

因为x0+
π
3
∈[-
π
6
6
]
,又cos(-
π
6
)=

解析