题目
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数 a的取值范围;
(3)当m=2时,如果函数g(x)=-f(x)-ax的图象与x轴交于两点A(x1,0)、B(x2,0)且0<x1<x2.求证:g′(px1+qx2)<0(其中正常数p,q满足p+q=1,且q≥p).
答案
x |
lnx |
记 φ=
x |
lnx |
求得 φ′(x)=
lnx-1 |
ln2x |
当x∈(1,e)时;φ′(x)<0;当x∈(e,+∞)时,φ′(x)>0
故φ(x)在x=e处取得极小值,也是最小值,
即φ(x)min=φ(e)=e,故m≤e.
(2)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根.
令g(x)=x-2lnx,则 g′(x)=1-
2 |
x |
当x∈[1,2)时,g′(x)<0,当x∈(2,3]时,g′(x)>0
g(x)在[1,2]上是单调递减函数,在(2,3]上是单调递增函数.
故g(x)min=g(2)=2-2ln2
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),
∴只需g(2)<a≤g(3),
故a的取值范围是(2-2ln2,3-2ln3〕
(3)∵g′(x)=
2 |
x |
∴
解析 |