题目
| 1 |
| 2 |
| 1 |
| 2 |
答案
| 1 |
| 2 |
| 1 |
| 2 |
等价于x2+
| 1 |
| 2 |
| 1 |
| 2 |
∵(
| 1 |
| 2 |
| 1 |
| 2 |
∴x2+
| 1 |
| 2 |
| 1 |
| 2 |
设y=x2+
| 1 |
| 2 |
| 1 |
| 4 |
∴当x≤-
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
解得λ≤-1,或λ≥
| 1 |
| 2 |
当x>-
| 1 |
| 4 |
| 1 |
| 4 |
达到最小值时,x2+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |
因此λ的范围就是 λ≤-1.
故答案为:(-∞,-1].
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |