设函数y=f(x)是定义在(0,+∞)上的函数,

难度:一般 题型:解答题 来源:不详

题目

设函数y=f(x)是定义在(0,+∞)上的函数,并且满足下面三个条件:
①对正数x、y都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1
(I)求f(1)和f(

1
9
)的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.

答案

(I)∵函数y=f(x)是定义在(0,+∞)上的函数,
对正数x、y都有f(xy)=f(x)+f(y),
∴令x=y=1,得f(1)=0.
而f(9)=f(3)+f(3)=-1-1=-2 且f(9)+f(

1
9
)=f(1)=0,
得f(
1
9
)=2.
(II)设0<x1<x2<+∞,由条件(1)可得f(x2)-f(x1)=f(
x2
x1
),
x2
x1
>1,由(2)知f(
x2
x1
)<0,
所以f(x2)<f(x1),
即f(x)在R+上是递减的函数.
由条件(1)及(I)的结果得:f[x(2-x)]<f(
1
9
),
由函数f(x)在R+上的递减性,得:

解析