已知定义在R的函数f(x)=-2x+a2x

难度:一般 题型:解答题 来源:不详

题目

已知定义在R的函数f(x)=

-2x+a
2x+1+b
(a,b为实常数).
(Ⅰ)当a=b=1时,证明:f(x)不是奇函数;
(Ⅱ)设f(x)是奇函数,求a与b的值;
(Ⅲ)当f(x)是奇函数时,证明对任何实数x、c都有f(x)<c2-3c+3成立.

答案

(Ⅰ)f(x)=

-2x+1
2x+1+1
f(1)=
-2+1
22+1
=-
1
5
f(-1)=
-
1
2
+1
2
=
1
4

所以f(-1)≠-f(1),f(x)不是奇函数;(2分)
(Ⅱ)f(x)是奇函数时,f(-x)=-f(x),
-2-x+a
2-x+1+b
=-
-2x+a
2x+1+b
对任意x∈R恒成立.(4分)
化简整理得(2a-b)•22x+(2ab-4)•2x+(2a-b)=0对任意x∈R恒成立.(6分)

解析