题目
| x-a |
| x2+bx+1 |
(1)求a,b的值;
(2)判断f(x)在(0,1)上的单调性,并用定义法证明你的结论;
(3)当x∈[a,a+1]时,求函数f(x)的最大值.
答案
| x-a |
| x2+bx+1 |
∴f(0)=0,即a=0
此时f(x)=
| x |
| x2+bx+1 |
且f(-x)=-f(x)恒成立
即
| x |
| x2+bx+1 |
| -x |
| x2-bx+1 |
解得b=0
(2)由(1)得f(x)=
| x |
| x2+1 |
理由如下:
任取(0,1)上两个实数x1,x2,且x1<x2,
则x1-x2<0,1-x1•x2>0,
则f(x1)-f(x2)
=
| x1 |
| x12+1 |
| x2 |
| x22+1 |
=
| x1•(x22+1)-x2•(x12+1) |
| (x12+1)•(x22+1) |
=
| (x1-x2) •(1-x1•x2 ) |
| (x12+1)•(x22+1) |
即f(x1)<f(x2)
故f(x)=
| x |
| x2+1 |
(3)由(1)中a=0
∴当x∈[a,a+1]=[0,1]
由(2)中故f(x)=
| x |
| x2+1 |
可得当x=1时,函数f(x)取最大值
| 1 |
| 2 |