题目
a+1 |
x |
(Ⅰ)讨论f(x)的奇偶性;
(Ⅱ)当f(x)为奇函数时,判断f(x)在区间(0,+∞)上的单调性,并用单调性的定义证明你的结论.
答案
2 |
x |
又f(-x)=
2 |
-x |
2 |
x |
∴f(x)为奇函数
②当a=-1时,f(x)=-2x2,其定义域为(-∞,0)∪(0,+∞)关于原点对称.
又f(-x)=-2(-x)2=-2x2=f(x)
∴f(x)为偶函数
③当a≠±1时f(2)=
5 |
2 |
11 |
2 |
11 |
2 |
5 |
2 |
又a≠±1
∴f(-2)≠±f(2)
∴f(x)既不是奇函数也不是偶函数
(Ⅱ)证明:由(Ⅰ)知f(x)为奇函数时,a=1
此时f(x)=
2 |
x |
设任意的x1,x2∈(0,+∞)且x1<x2,
|
又x1,x2∈(0,+∞)且x1<x2,
∴x2-x1>0,
∴
x1x2+1 |
x1x2 |
∴f(x1)-f(x2)>0
∴f(x1)>f(x2)
∴f(x)在区间(0,+∞)上是减函数.