题目
| x |
| ax+b |
| 1 |
| 2 |
(1)求a、b的值;
(2)在直角坐标系中,求定点A(0,2)到函数f(x)图象上任意一点P(x,y)的距离|AP|的最小值.
(3)当x∈(
| 1 |
| 4 |
| 1 |
| 2 |
答案
| x |
| ax+b |
| 1 |
| 2 |
∴
| 1 |
| a+b |
| 1 |
| 2 |
又
| x |
| ax+b |
∴x(
| 1-ax-b |
| ax+b |
∴b=1,a=1.
∴f(x)=
| x |
| x+1 |
(2)由(1)知,P(x,
| x |
| x+1 |
|AP|2=(
| x |
| x+1 |
=(
| -x-2 |
| x+1 |
=(
| 1 |
| x+1 |
令t=
| 1 |
| x+1 |
则|AP|2=t2+2t+1+(
| 1 |
| t |
| 2 |
| t |
=(t-
| 1 |
| t |
| 1 |
| t |
令r=t-
| 1 |
| t |
则|AP|2=r2+2r+4=(r+1)2+3,
∴当r=-1,即t-
| 1 |
| t |
-1±
|