题目
| 1-a+lnx |
| x |
(1)求f(x)的极值;
(2)若关于x的不等式
| lnx |
| x |
| 2 |
| k+1 |
(3)证明:
| ln22 |
| 22 |
| ln32 |
| 32 |
| lnn2 |
| n2 |
| 2n2-n-1 |
| 2(n+1) |
答案
| a-lnx |
| x2 |
函数f(x)为增函数,当x∈(ea,+∞)时,f"(x)<0,函数f(x)为减函数,
故f(x)有极大值为f(ea)=e-a,(5分)
(2)由(1)知f(x)≤
| 1 |
| ea |
则
| lnx |
| x |
| 1 |
| e |
故只需
| -2k |
| k+1 |
(3)由(1)知f(x)≤e-a,令a=0,则有lnx≤x-1,
∵n∈N,n≥2∴lnn2≤n2-1,
∴
| lnn2 |
| n2 |
| n2-1 |
| n2 |
| 1 |
| n2 |
故
| ln22 |
| 22 |
| ln32 |
| 32 |
| lnn2 |
| n2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
=(n-1)-(
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=(n-1)-(
| 1 |
| 2 |
| 1 |
| n+1 |
| 2n2-n-1 |
| 2(n+1) |