题目
1-a+lnx |
x |
(1)求f(x)的极值;
(2)若关于x的不等式
lnx |
x |
2 |
k+1 |
(3)证明:
ln22 |
22 |
ln32 |
32 |
lnn2 |
n2 |
2n2-n-1 |
2(n+1) |
答案
a-lnx |
x2 |
函数f(x)为增函数,当x∈(ea,+∞)时,f"(x)<0,函数f(x)为减函数,
故f(x)有极大值为f(ea)=e-a,(5分)
(2)由(1)知f(x)≤
1 |
ea |
则
lnx |
x |
1 |
e |
故只需
-2k |
k+1 |
(3)由(1)知f(x)≤e-a,令a=0,则有lnx≤x-1,
∵n∈N,n≥2∴lnn2≤n2-1,
∴
lnn2 |
n2 |
n2-1 |
n2 |
1 |
n2 |
故
ln22 |
22 |
ln32 |
32 |
lnn2 |
n2 |
1 |
22 |
1 |
32 |
1 |
n2 |
=(n-1)-(
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=(n-1)-(
1 |
2 |
1 |
n+1 |
2n2-n-1 |
2(n+1) |