题目
π |
2 |
(1)判断函数f(x)的奇偶性并证明;
(2)求f(x);
(3)求f(x)+cosx+f(x)•cosx的最大值.
答案
(2)令y=
π |
2 |
得f(x+
π |
2 |
π |
2 |
π |
2 |
令x=
π |
2 |
得f(x+
π |
2 |
π |
2 |
π |
2 |
由(1),f(x)是奇函数,f(x-
π |
2 |
π |
2 |
两式相加:2f(x+
π |
2 |
π |
2 |
(3)即求y=sinα+cosα+sinα•cosα的最大值
设sinα+cosα=t=
解析 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
解析 |