题目
1 |
x2 |
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>-1,试判断f(x)在(0,1]上的单调性,并证明你的结论
答案
1 |
x2 |
∵f(x)是奇函数,即f(-x)=-f(x)
∴f(x)=2ax-
1 |
x2 |
(2)答:f(x)在(0,1]上单调递增.
证明:∵f′(x)=2a+
2 |
x3 |
1 |
x3 |
∴
1 |
x3 |
又∵a>-1
∴a+
1 |
x3 |
即f′(x)=2(a+
1 |
x3 |
∴f(x)在(0,1]上单调递增.
1 |
x2 |
1 |
x2 |
1 |
x2 |
2 |
x3 |
1 |
x3 |
1 |
x3 |
1 |
x3 |
1 |
x3 |