若f(x)在定义域(-1,1)内可导,且f′(x

难度:一般 题型:解答题 来源:不详

题目

若f(x)在定义域(-1,1)内可导,且f′(x)<0;又当a、b∈(-1,1)且a+b=0时,f(a)+f(b)=0,解不等式f(1-m)+f(1-m2)>0.

答案

∵f(x)在(-1,1)内可导,且f′(x)<0,
∴f(x)在(-1,1)上为减函数
又当a,b∈(-1,1),a+b=0时,f(a)+f(b)=0,
∴f(b)=-f(a),即f(-a)=-f(a).
∴f(x)在(-1,1)上为奇函数,
∴f(1-m)+f(1-m2)>0⇔f(1-m)>-f(1-m2
⇔f(1-m)>f(m2-1)⇔

解析