已知:M={a|函数y=2sinax在[-π

难度:一般 题型:填空题 来源:不详

题目

已知:M={a|函数y=2sinax在[-

π
3
π
4
]上是增函数},N={b|方程3-|x-1|-b+1=0有实数解},设D=M∩N,且定义在R上的奇函数f(x)=
x+n
x2+m
在D内没有最小值,则m的取值范围是______.

答案

∵M={a|函数y=2sinax在[-

π
3
π
4
]上是增函数,可得
T
2
3
且a>0,即
2a
3
,解得a
3
2
,故M={a|a
3
2
}
∵N={b|方程3-|x-1|-b+1=0有实数解},所以可得N={b|1<b≤2}
∴D=M∩N=(1,
3
2
]
f(x)=
x+n
x2+m
是定义在R上的奇函数
∴f(0)=0可得n=0
∴f(x)=
x
x2+m
,又f(x)=
x+n
x2+m
在D内没有最小值
∴f(x)=
x
x2+m
=
1
x+
m
x

若m≤0,可得函数f(x)在D上是减函数,函数在右端点
3
2
处取到最小值,不合题意
若m>0,令h(x)=x+
m
x
,则f(x)=
x+n
x2+m
在D内没有最小值可转化为h(x)在D内没有最大值,下对h(x)在D内的最大值进行研究:
由于h′(x)=1-
m
x2
,令h′(x)>0,可解得x>

解析