题目
π |
2 |
A.(0,1] | B.(-∞,1) | C.(-∞,1] | D.(0,
|
答案
又当-1≤x≤1时,cosx>0,x2>0,
∴f′(x)=3x2+cosx>0,
当x<-1或x>1时,x2>1,
∴f′(x)=3x2+cosx>0,
综上所述,对任意x∈R,f′(x)=3x2+cosx>0
∴f(x)=)=x3+sinx是增函数;
∵f(mcosθ)+f(1-m)>0恒成立,即f(mcosθ)>f(m-1)恒成立,
∴mcosθ>m-1,令g(m)=(cosθ-1)m+1,
当0≤θ≤
π |
2 |
∵0≤θ≤
π |
2 |
∴cosθ∈[0,1],
∴cosθ-1≤0,
∴当θ=0时,(cos0-1)m+1>0恒成立,①
当θ=
π |
2 |
π |
2 |
由①②得:m<1.
故选B.