题目
| 2 |
| 3 |
(1)若AB=2,四边形ADPE的面积记为S(A),试用角A表示出S(A),并求S的最大值;
(2)若
| BE |
| CD |
答案

∴S=S△APD+S△AEP=
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 6 |
当A=
| π |
| 2 |
(2)设AB=2x,AC=3x,
| BE2 |
| CD2 |
4x2+
| ||||
| 9x2+x2-2×x×3x×cosA |
| 25-24cosA |
| 40-24cosA |
| 15 |
| 40-24cosA |
∵A∈(0,π),∴cosA∈(-1,1),可得
| 1 |
| 4 |
| BE |
| CD |
| 7 |
| 8 |
若
| BE |
| CD |
| 7 |
| 8 |
∴t的最小值为
| 7 |
| 8 |