题目
、
为函数
图象上不同的两个点,且 AB∥
轴,又有定点
,已知
是线段
的中点.
⑴ 设点
的横坐标为
,写出
的面积
关于
的函数
的表达式;⑵ 求函数
的最大值,并求此时点
的坐标。
答案
;⑵当
时,
有最大值
,此时,点
的坐标为
;当
时,
有最大值
,此时,点
的坐标为
或
。
解析
(1)设
,由
是线段
的中点,且
,可推得点
的坐标为
.进而表示其面积的表达式。
(2)由上知:

对参数m进行讨论得到最值。
解:⑴ 如图,设
,由
是线段
的中点,且
,可推得点
的坐标为
.
∴

即:
…(6分)⑵ 由上知:

① 当
即
时,令
,
有最大值
,此时,点
的坐标为
;② 当
即
时,令
,
有最大值
,此时,点
的坐标为
或
…….(12分)纵上,当
时,
有最大值
,此时,点
的坐标为
;当
时,
有最大值
,此时,点
的坐标为
或
…(13分)