题目
.(1)求f (1)的值;
(2)证明:ac≥
;(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤
或m≥
.
答案
(2)见解析
(3)见解析
解析
有f (x) ≤
.令x=1∴1≤f (1) ≤
.即f (1)="1.·······················" 5分
(2) 由a-b+c=0及f (1)=1.
有
,可得b=a+c=
.·············· 7分又对任意x,f(x)-x≥0,即ax2-
x+c≥0.∴a>0且△≤0.
即
-4ac≤0,解得ac≥
.················ 9分(3) 由(2)可知a>0,c>0.
a+c≥2
≥2·
=
.················ 10分当且仅当
时等号成立.此时a=c=
.························ ∴f (x)=
x2+
x+
,F (x)=f (x)-mx=
[x2+(2-4m)x+1].············· 12分当x∈[-2,2]时,f (x)是单调的,所以F (x)的顶点一定在[-2,2]的外边.
∴
≥2.····················· 13分解得m≤-
或m≥
. …………………………………………………………..14分