题目
| 1 |
| 2 |
| A.[-4,2] | B.(-∞,2] | C.[-4,+∞) | D.[-4,-2] |
答案
所以f(ax+1)≤f(x+2)在 x∈[
| 1 |
| 2 |
| 1 |
| 2 |
又因为在[0,+∞)上是增函数,
故①式转化为|ax+1|≤|x+2|在 x∈[
| 1 |
| 2 |
在 x∈[
| 1 |
| 2 |
a=1时,②转化为-2x-3≤0⇒x≥-
| 3 |
| 2 |
a=-1时,②转化为2x+1≥0⇒x≥-
| 1 |
| 2 |
|a|>1时,得a2-1>0,②转化为
解析 |
| 1 |
| 2 |
| A.[-4,2] | B.(-∞,2] | C.[-4,+∞) | D.[-4,-2] |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
解析 |