题目
1 |
2x |
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)证明:函数f(x)在区间(0,+∞)上为增函数.
答案
∴-x∈R,
∵f(-x)=2-x+
1 |
2-x |
1 |
2x |
故f(x)为偶函数.
(II)设0<x1<x2,则
f(x1)-f(x2)=2x1+
1 |
2x1 |
1 |
2x2 |
=(2x1-2x2)(1-
1 |
2x1+x2 |
∵0<x1<x2,
∴2x1-2x2<0,1-
1 |
2x1+x2 |
即f(x1)<f(x2)
∴函数f(x)在区间(0,+∞)上为增函数.
1 |
2x |
1 |
2-x |
1 |
2x |
1 |
2x1 |
1 |
2x2 |
1 |
2x1+x2 |
1 |
2x1+x2 |