题目
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=
1 |
log2bn+3 |
答案
当n≥2时,Sn=4an-1+1.②
①-②得an+1=4an-4an-1.
所an+1-2an=2(an-2an-1).
又bn=an+1-2an,
所以bn=2bn-1.
因为a1=1,且a1+a2=4a1+1,
所以a2=3a1+1=4.
所以b1=a2-2a1=2.
故数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)由(Ⅰ)可知bn=2n,则cn=
1 |
log2bn+3 |
1 |
n+3 |
∴Tn=c1c2+c2c3+c3c4+…+cncn+1
=
1 |
4×5 |
1 |
5×6 |
1 |
6×7 |
1 |
(n+3)(n+4) |
=
1 |
4 |
1 |
n+4 |
=
n |
4(n+4) |
由4mTn>(n+2),得
mn |
n+4 |
n+2 |
n+3 |
即m>
(n+4)(n+2) |
n(n+3) |
所以m>
n2+6n+8 |
n2+3n |
所以m>1+
3n+8 |
n2+3n |
3 |
n+3 |
8 |
n2+3n |
设f(x)=1+
3 |
x+3 |
8 |
x2+3x |
可知f(x)在[1,+∞)为减函数,又f(1)=
15 |
4 |
则当n∈N时,有f(n)≤f(1).
所以∴m>
15 |
4 |
故当m>
15 |
4 |