题目
(Ⅰ)已知函数f(x)=
x2+mx+m |
x |
(Ⅱ)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;
(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,当t>0时,若对任意实数x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.
答案
x2+mx+m |
x |
∴f(x)+f(-x)=2,
∴
x2+mx+m |
x |
x2-mx+m |
-x |
∴m=1…(4分)
(Ⅱ)∵函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,
∴g(x)+g(-x)=2,
∵当x∈(0,+∞)时,g(x)=x2+ax+1,
∴当x<0时,g(x)=2-g(-x)=-x2+ax+1…(8分)
(Ⅲ)由(Ⅰ)得f(t)=t+
1 |
t |
g(x)=-x2+ax+1=-(x-
a |
2 |
a2 |
4 |
①当
a |
2 |
a2 |
4 |
解析 |