已知函数f(x)=13x3+bx2+cx

难度:一般 题型:解答题 来源:深圳一模

题目

已知函数f(x)=

1
3
x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x

答案

(1)求导数可得f′(x)=x2+2bx+c
∵f′(2-x)=f′(x),∴f′(x)关于x=1对称,∴b=-1
与x轴交点处的切线为y=4x-12,设交点为(a,0),则f(a)=0,f′(a)=4
∴在(a,0)处的切线为:y=4(x-a)+0=4x-4a=4x-12,∴4a=12,∴a=3
由f"(3)=9-6+c=3+c=4得:c=1
由f(3)=
1
3
×27-32+3+d=0得:d=-3
所以有:f(x)=
1
3
x3-x
2+x-3
(2)g(x)=x

解析