题目
ax2+1 |
bx+c |
5 |
2 |
(1)求a,b,c的值;
(2)当x∈(0,+∞)时,讨论函数的单调性,并写出证明过程.
答案
∴f(-x)=-f(x),
f(x)=
ax2+1 |
-bx+c |
ax2+1 |
-bx-c |
∴对任意x∈(-∞,0)∪(0,+∞),
ax2+1 |
-bx+c |
ax2+1 |
-bx-c |
∴c=0(2分)
又f(1)=
a+1 |
b |
4a+1 |
2b |
5 |
2 |
可得a=b=1(4分)
∴a=b=1,c=0(5分)
(2)f(x)=
x2+1 |
x |
得x1,x2是(0,+∞)上任意两实数,且x1<x2
f(x1)-f(x2)=
| ||
x1 |
| ||
x2 |
| ||||
x1x2 |
=
x1x2(x1-x2)+(x2-x1) |
x1x2 |
(x1-x2)(x1x2-1) |
x1x2 |
当x1,x2∈(0,1)时,x1x2-1<0,x1-x2<0,x1x2>0
∴
(x1-x2)(x1x2-1) |
x1x2 |
当x1,x2∈(1,+∞)时,x1x2-1>0,x1-x2<0,x1x2>0
∴
(x1-x2)(x1x2-1) |
x1x2 |
∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.(12分)