定义在R上的奇函数f(x),当x∈(-∞,0)时

难度:一般 题型:解答题 来源:不详

题目

定义在R上的奇函数f(x),当x∈(-∞,0)时,f(x)=-x2+mx-1.
(1)当x∈(0,+∞)时,求f(x)的解析式;
(2)若方程f(x)=0有五个不相等的实数解,求实数m的取值范围.

答案

(1)设x>0,则-x<0,∴f(-x)=-x2-mx-1(2分)
又f(x)为奇函数,即f(-x)=-f(x),(3分)
所以,f(x)=x2+mx+1(x>0),(4分)
又f(0)=0,(6分)
所以f(x)=

解析