若f(x)是R上周期为5的奇函数,且满足f(1)

难度:一般 题型:单选题 来源:不详

题目

若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=3,则f(8)-f(4)的值为(  )

A.-1 B.1 C.-2 D.2

答案

f(x)是R上周期为5的奇函数,f(-x)=-f(x),
∵f(1)=-f(-1),可得f(-1)=-f(1)=-1,
因为f(2)=-f(2),可得f(-2)=-f(2)=-3,
∴f(8)=f(8-5)=f(3)=f(3-5)=f(-2)=-3,
f(4)=f(4-5)=f(-1)=-1,
∴f(8)-f(4)=-3-(-1)=-2,
故选C;

解析

闽ICP备2021017268号-8